Scale-Based Gaussian Coverings: Combining Intra and Inter Mixture Models in Image Segmentation
نویسندگان
چکیده
منابع مشابه
Scale-Based Gaussian Coverings: Combining Intra and Inter Mixture Models in Image Segmentation
By a “covering” we mean a Gaussian mixture model fit to observed data. Approximations of the Bayes factor can be availed of to judge model fit to the data within a given Gaussian mixture model. Between families of Gaussian mixture models, we propose the Rényi quadratic entropy as an excellent and tractable model comparison framework. We exemplify this using the segmentation of an MRI image volu...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Models
Abstract. Recently stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. Also image segmentation means to divide one picture into different types of classes or regions, for example a picture of geometric shapes has some classes with different colors such as ’circle’, ’rectangle’, ’triangle’ and so ...
متن کاملImage segmentation by gaussian mixture models and modified FCM algorithm
The Expectation Maximization (EM) algorithm and the clustering method Fuzzy-C-Means (FCM) are widely used in image segmentation. However, the major drawback of these methods is their sensitivity to the noise. In this paper, we propose a variant of these methods which aim at resolving this problem. Our approaches proceed by the characterization of pixels by two features: the first one describes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2009
ISSN: 1099-4300
DOI: 10.3390/e11030513